
Journal of Computational Physics 181, 478–498 (2002)
doi:10.1006/jcph.2002.7138

Highly Energy-Conservative Finite Difference
Method for the Cylindrical Coordinate System

Koji Fukagata∗,† and Nobuhide Kasagi∗
∗Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656,

Japan; and †Institute for Energy Utilization, AIST, 1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
E-mail: fukagata@thtlab.t.u-tokyo.ac.jp

Received November 5, 2001; revised June 3, 2002

A highly energy-conservative second-order-accurate finite difference method for
the cylindrical coordinate system is developed. It is rigorously proved that energy
conservation in discretized space is satisfied when appropriate interpolation schemes
are used. This argument holds not only for an unequally spaced mesh but also for
an equally spaced mesh on cylindrical coordinates but not on Cartesian coordinates.
Numerical tests are undertaken for an inviscid flow with various schemes, and it
turns out that the proposed scheme offers a superior energy-conservation property
and greater stability than the intuitive and previously proposed methods, for both
equally spaced and unequally spaced meshes. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

With continuous development of high-performance computers, direct numerical simula-
tion (DNS) and large eddy simulation (LES) have become very popular and even inevitable
tools for turbulence research [1–4]. In general, the finite difference (FDM) and finite ele-
ment (FEM) methods are used in these computations, while for special configurations with
directional homogeneity, such as homogeneous turbulence and channel flow, very accurate
simulation can be performed using the spectral method [5].

One of the most important requirements in FDM-based DNS/LES of incompressible flows
is the flux and energy-conservation property of the discretized advection terms. Without a
sufficient degree of flux and energy conservation in discretized space, computations may
become unstable and eventually diverge. The idea of energy conservation in discretized
space was addressed in the earliest stage of the development of numerical schemes and was
then applied to the establishment of an energy-conservative second-order-accurate FDM on
an equally spaced mesh in Cartesian coordinates [6, 7]. However, for a long time, it was
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unclear whether such energy-conservative schemes exist for higher order finite difference
schemes, for unequally spaced mesh, or for coordinate systems other than Cartesian.

Recently, Morinishi et al. [8] generalized higher order finite difference schemes as rele-
vant combinations of second-order finite differences defined on different stencils and suc-
ceeded in developing energy-conservative fourth-order-accurate finite difference schemes
on various (regular, staggered, collocate) meshes. On the other hand, Kajishima [9] carefully
examined the use of unequally spaced Cartesian staggered meshes and proposed energy-
conservative second-order finite difference schemes for both the gradient and divergence
forms of nonlinear terms in Navier–Stokes equations; they are proved to be valid even
for unequally spaced mesh. According to Kajishima’s [9] analysis, energy-conservative
schemes on an unequally spaced mesh can be constructed only when relevant interpolation
schemes are applied. A similar conclusion concerning spatial discretization is obtained in
the very recent work by Ham et al. [10], who developed an energy-conservation scheme
also in time discretization.

FDM-based DNS/LES in the cylindrical coordinate system has been reported by several
workers. Various schemes have been proposed to remove singularity at the cylindrical axis
(r = 0). Eggels et al. [11] and Akselvoll and Moin [12] used a second-order-accurate FDM
with a staggered mesh system. They used the primitive variables, i.e., ur , uθ , uz , and p, and
resolved the singularity by defining the value of ur at the axis as an average of those at the two
grid points sandwiching the axis. Verzicco and Orlandi [13] proposed using the flux variable
in the radial direction, qr = (rur ), to avoid calculating ur at the axis, and demonstrated the
validity of their techniques in DNS of turbulent flow in a rotating pipe [14]. Very recently,
Constantinescu and Lele [15], based on general series expansion around a singular point,
proposed a very accurate treatment at the axis, which is suitable to higher order FDMs.

In the recent studies of FDMs in cylindrical coordinates [13, 15, 16], focus has been
put mainly on the treatment of singularity at the cylindrical axis. Energy conservation in
discretized space such as that made for the Cartesian coordinates, however, has not been
discussed in detail. Moreover, the advantages and disadvantages of the various schemes
proposed, with respect to energy conservation, remain unclear. Therefore, the objectives
of the present study are to examine such energy conservation for the widely used second-
order-accurate FDM in the cylindrical coordinate system and to propose highly energy-
conservative schemes for the advection and centrifugal/Coriolis terms and a resolution for
the singularity at the axis.

The paper is organized in the following manner. The governing equation in cylindrical
coordinates is introduced in Section 2. In Section 3, mathematical formulations of energy-
conservative discretization and interpolation schemes are provided; a new treatment of the
singularity at the axis is proposed in Section 4. The proposed schemes are numerically
tested in Section 5. Finally, conclusions are derived in Section 6.

2. GOVERNING EQUATIONS

The governing equations for the motion of an incompressible fluid flow are the continuity
and Navier–Stokes equations. In cylindrical coordinates, these equations read:

• Continuity equation:

1

r

∂(rur )

∂r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0; (1)
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• Navier–Stokes equation:

∂ur

∂t
= hr + br − ∂p
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+ 1

Re
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,
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]
.

Here, the equations are nondimensionalized by using the pipe diameter R, the characteristic
velocity U , and the kinematic viscosity of fluid ν. The Reynolds number is defined by

Re = U R

ν
. (3)

The characteristic velocity, U , should be defined as either the friction velocity, uτ = √
τw/ρ,

or the laminar centerline velocity, Ulc, depending on the flow condition, i.e., whether the
mean pressure gradient, −d P/dz, or the mass flow rate is kept constant over the time of
integration.

The first terms, hr , hθ , and hz , on the right-hand side of the Navier–Stokes equation
denote the advection terms, i.e.,

hr = −1

r

∂

∂r
(rur ur ) − 1

r

∂

∂θ
(uθur ) − ∂

∂z
(uzur ),

hθ = −1

r

∂

∂r
(rur uθ ) − 1

r

∂

∂θ
(uθuθ ) − ∂

∂z
(uzuθ ),

hz = −1

r

∂

∂r
(rur uz) − 1

r

∂

∂θ
(uθuz) − ∂

∂z
(uzuz).

(4)

The second terms, br and bθ , in the equations of the r and θ directions are the centrifugal
and Coriolis forces arising due to the curvature of the coordinate system, respectively,
i.e.,

br = u2
θ

r
,

bθ = −ur uθ

r
.

(5)

3. RELEVANT SPATIAL DISCRETIZATION AND INTERPOLATION

3.1. Computational Mesh

In the present study, we focus only on the most frequently used method—the second-
order-accurate finite difference scheme with a staggered mesh system. As usual, velocities
are defined on the cell surfaces and pressure is defined at the cell centers as shown in
Fig. 1. As a practically useful choice, the spacing is assumed to be equal in the θ and z
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FIG. 1. Definition point of each variable. Ordinary cell (left) and the first cell from the center (right).

directions and unequal in the r direction. The definition of notations for the positions and
mesh spacings in the r direction is shown in Fig. 2.

3.2. Advection Term

The advection terms given by Eq. (4) can be discretized so that the flux conservation is
satisfied. For instance, the advection term in the r -direction, hr , can be discretized as

hr,i+ 1
2 jk = − 1

ri+ 1
2

(rur )i+1 jkur,i+1 jk − (rur )i jk ur,i jk

ri+ 1
2

− 1

ri+ 1
2

uθ,i+ 1
2 j+ 1

2 k ur,i+ 1
2 j+ 1

2 k − uθ,i+ 1
2 j− 1

2 k ur,i+ 1
2 j− 1

2 k

θ

−
uz,i+ 1

2 jk+ 1
2

ur,i+ 1
2 jk+ 1

2
− uz,i+ 1

2 jk− 1
2

ur,i+ 1
2 jk− 1

2

z
, (6)

where ri+ 1
2

is defined in Fig. 2. The above equation contains undefined velocities such as
ur,i jk and uθ,i+ 1

2 j+ 1
2 k . Therefore, we need to evaluate them by interpolation of the defined

velocities. A common practice is to use an arithmetic average or a linear interpolation. With

FIG. 2. Definition of the positions, ri and ri+ 1
2

, and the local mesh spacings, ri and ri+ 1
2

.
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an arithmetic average, for example, Eq. (6) simply becomes
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2
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k
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2
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2
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k
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2

z
, (7)

where the overbar, ·�, denotes the arithmetic average, and the superscript to the overbar, �,
represents the direction of interpolation, e.g.,

(rur )
i
i jk =

(rur )i+ 1
2 jk + (rur )i− 1

2 jk

2
,

ur
j
i+ 1

2 j+ 1
2 k

=
ur,i+ 1

2 j+1 k + ur,i+ 1
2 jk

2
.

(8)

However, according to the recent analyses on FDMs in Cartesian coordinates [9, 10,
17], energy conservation is violated in discretized space when an unequally spaced mesh
is employed and the arithmetic average or the linear interpolation is used on it. This is due
to an inconsistency between the differencing and interpolating operators [17]. In order to
overcome this problem, Kajishima [9] treated the unequally spaced rectangular mesh xm

(m = 1, 2, 3) as a mapping from an equally spaced mesh ξm . The divergence form of the
advection term was approximated by

∂umun

∂xn
= 1

J

∂(JU num)

∂ξ n
= 1

J

δ
(

JU nm
um

n
)

δξ n
, (9)

where U n = u�∂ξ n/∂x� is the contravariant velocity and δ/δξ n is the second-order central
difference on the ξ n mesh. The Jacobian in the mapping is denoted as J . Energy conservation
by this approximation was then verified on a two-dimensional Cartesian mesh by a procedure
similar to that shown below. It is also worth noting that such a relevant interpolation rule
makes the divergence form and the gradient form of the advection term compatible in
discretized space. This was also verified by the fact that two different numerical simulations
of a two-dimensional cavity flow (one of them adopted the divergence form for the nonlinear
term; the other, the gradient form) gave the same results. On the other hand, Ham et al. [10]
approximated the nonlinear term as

∂umun

∂xn
= δûn

mum
n

δxn
, (10)

where ·̂ � is an average weighted by the overlapping volume of the cell where the velocity
is defined and of the cell where it is interpolated (referred to hereafter as the volume-flux
average), and verified the energy-conservation property on an unequally spaced rectangular
mesh. It can be easily noticed that these two expressions, Eqs. (9) and (10), are identical
when they are expressed in concrete form in Cartesian coordinates. Therefore, the relevant
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interpolation schemes for the energy to be conserved can be summarized as:

• volume-flux average—for the advecting velocity;
• arithmetic average—for the advected velocity.

Here, the terms advecting and advected are used for notational convenience. Their meanings
are the same as those used for the gradient forms of nonlinear terms in the Navier–Stokes
equation: in Eq. (6), for example, (rur ), uθ , and uz are the advecting velocities and ur is
the advected velocity.

We apply this interpolation rule to the discretized equation in the cylindrical coordi-
nates. As one can see in the verification process below, the key technique (or trick) in the
present case is to arrange the right-hand side in such a form that every term has a common
denominator, i.e., ri+ 1

2
ri+ 1

2
. As a result, Eq. (4) reads

hr, i+ 1
2 jk = − 1

ri+ 1
2
ri+ 1

2

[
(rur )

i
i+1 jk ur

i
i+1 jk

− (rur )
i
i jk ur

i
i jk

]

− 1
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2
θ
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ûθ

i

i+ 1
2 j+ 1

2 k
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j
i+ 1

2 j+ 1
2 k

− ûθ
i

i+ 1
2 j− 1

2 k
ur

j
i+ 1

2 j− 1
2 k

]

− 1

z

[
ûz

i

i+ 1
2 jk+ 1

2

ur
k
i+ 1

2 jk+ 1
2

− ûz
i

i+ 1
2 jk− 1

2

ur
k
i+ 1

2 jk− 1
2

]
, (11)

where ·̂ � denotes the volume-flux average defined by

ûθ
i
i+ 1

2 j+ 1
2 k

=
ri+1uθ,i+1 j+ 1

2 k + ri uθ,i j+ 1
2 k

2ri+ 1
2

(12)

and

ûz
i
i+ 1

2 jk+ 1
2

=
ri+1ri+1uz,i+1 jk+ 1

2
+ riri uz,i jk+ 1

2

2ri+ 1
2
ri+ 1

2
χi+ 1

2

. (13)

In the present case, the volume-flux average for (rur ) is, within second-order accuracy,
identical to the arithmetic average. The normalization factor, χi+ 1

2
, in Eq. (13) is necessary

so that the summation of the weighting factors becomes unity,

χi+ 1
2

= ri+1ri+1 + riri

2ri+ 1
2
ri+ 1

2

= 1 + ri+1 − ri

2ri+ 1
2

, (14)

which, of course, is unity for an equally spaced mesh and close to unity for an unequally
spaced mesh if the variations of r in the vicinity of the cylindrical axis are small. Note
that the weighting factors due to mesh spacings, ri and ri+1, in Eqs. (12) and (13) are
the opposite of those in the linear interpolation. Moreover, it is emphasized that the present
expression, Eq. (11), and that with the arithmetic average, Eq. (7), are not identical even
when the mesh spacing is equal, i.e., ri = ri+1 = const.; the flux weighting factors due
to ri and ri+1 still exist in the z-differential term. This situation is quite different from that
in the Cartesian coordinate system [9, 10], where the arithmetic average and the relevant
interpolation become identical in the case of an equally spaced mesh.

The terms in other directions, hθ and hz , can be discretized similarly. Under the present
conditions, i.e., uniform mesh in the θ and z directions, the final expression of hθ and hz can
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be obtained using the arithmetic average only. Hereafter, we refer to the form of Eq. (11)
as (Div.-C), while the form obtained using the arithmetic average, Eq. (7), is referred to as
(Div.-A).

The conservation of a squared value, u2
r , i.e., a radial component of the kinetic energy,

can be verified as follows. Similar to that in Eq. (11), the discretized advection term of the
squared value can be written as:

Hr,i+ 1
2 jk = − 1

ri+ 1
2
ri+ 1

2

[
(rur )

i
i+1 jk

(̃
u2

r

)i

i+1 jk − (rur )
i
i jk

(̃
u2

r

)i

i jk

]

− 1

ri+ 1
2
θ

[
ûθ

i

i+ 1
2 j+ 1

2 k

(̃
u2

r

) j

i+ 1
2 j+ 1

2 k − ûθ
i

i+ 1
2 j− 1

2 k

(̃
u2

r

) j

i+ 1
2 j− 1

2 k

]

− 1

z

[
ûz

i

i+ 1
2 jk+ 1

2

(̃
u2

r

)k

i+ 1
2 jk+ 1

2
− ûz

i

i+ 1
2 jk− 1

2

(̃
u2

r

)k

i+ 1
2 jk− 1

2

]
. (15)

The squared values at undefined points are evaluated by following Piacsek and Williams [7],
e.g.,

(̃
u2

r

)
i, j,k = ur,i+ 1

2 jkur,i− 1
2 jk,(̃

u2
r

)
i+ 1

2 , j+ 1
2 ,k = ur,i+ 1

2 j+1kur,i+ 1
2 jk, (16)

(̃
u2

r

)
i+ 1

2 jk+ 1
2

= ur,i+ 1
2 jk+1ur,i+ 1

2 jk,

and the normalization factor for the z-differential term, χi+ 1
2
, was approximated as unity.

The transport equation of the squared value can also be obtained by multiplying 2uri+ 1
2 , j,k

to Eq. (11). The former, i.e., Eq. (15), exactly represents the transport of the squared value,
while the latter, i.e., 2(ur hr )i+ 1

2 jk , expresses the squared value transport as a result of
advection. Therefore, these two expressions must be identical in order for the discretized
advection term to become energy-conservative. By subtracting Eq. (15) from 2(ur hr )i+ 1

2 jk ,
one obtains

2(ur hr )i+ 1
2 jk − Hr,i+ 1

2 jk = −
ri+1ri+1u2

r,i+ 1
2 jk

2ri+ 1
2
ri+ 1

2

( �D · �u)i+1 jk −
riri u2

r,i+ 1
2 jk

2ri+ 1
2
ri+ 1

2

( �D · �u)i jk,

(17)

where ( �D · �u)i jk expresses the divergence of the discretized velocity field, i.e.,

( �D · �u)i jk = 1

ri

(rur )i+ 1
2 jk − (rur )i− 1

2 jk

ri
+ 1

ri

uθ,i j+ 1
2 k − uθ,i j− 1

2 k

θ
+

uz,i jk+ 1
2
− uz,i jk− 1

2

z
.

(18)

Therefore, the squared value is perfectly conserved if the continuity is satisfied in the
discretized space. The equations in the θ and z directions can also be verified in the same
way.

It should be emphasized again that the scheme based on the arithmetic interpolation, i.e.,
(Div.-A) expressed by Eq. (7), is not energy-conserving even on the equally spaced mesh
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(ri = r ) in the cylindrical coordinates. An analysis similar to that in Eqs. (15)–(17) for
the case of (Div.-A) results in

2(ur hr )i+ 1
2 jk − Hr,i+ 1

2 jk = −
ri+1u2

r,i+ 1
2 jk

2ri+ 1
2

( �D · �u)i+1 jk −
ri u2

r,i+ 1
2 jk

2ri+ 1
2

( �D · �u)i jk

+
r2u2

r,i+ 1
2 jk

4ri+ 1
2

δ2uz

δrδz

∣∣∣∣∣
i+ 1

2 jk

,
(19)

where δ/δr and δ/δz denote the usual second-order central difference. Equation (19) sug-
gests that the energy-conservation property in (Div.-A) on the equally spaced mesh has a
first-order inconsistency near the axis (r ∼ r ). Similar analyses for other schemes, e.g.,
(Div.-A) on an unequally spaced mesh or (Div.-F), which appears in the next section, also
show that 2(ur hr )i+ 1

2 jk and Hr,i+ 1
2 jk are inconsistent, although the order of inconsistency

cannot be expressed in a form as simple as Eq. (19). Therefore, only the combination of
discretization and interpolation schemes described above, i.e., (Div.-C), seems to satisfy the
conservation of squared values.

3.3. Body Force Term

The body force terms, br and bθ , satisfy the following relation in continuous space:

ur br + uθbθ = 0. (20)

This relation expresses the exchange of energy between r and θ components. Therefore,
interpolation for these terms should be designed so as to satisfy this rigorous conserva-
tion rule in each 1/4 of a cell as shown in Fig. 3. The resulting form, referred to as

FIG. 3. Subregion of a control volume for ur and uθ (shaded). Energy exchange due to body force is conserved
in each subregion.
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(Body-C), is

br,i+ 1
2 jk = 1

ri+ 1
2

ri+1
(
u2

θ

) j

i+1 jk + ri
(
u2

θ

) j

i jk

2ri+ 1
2

,

bθ,i j+ 1
2 k = − 1

ri
ur

i
j

i j+ 1
2 kuθ,i j+ 1

2 k .

(21)

Note, again, that the weighting factors are opposite to those in the linear interpolation.
It is unclear what kind of interpolation scheme was used in previous simulations. An

intuitive method, however, is to approximate the undefined velocity simply by using an
arithmetic average, which is referred to as (Body-A). In this case, the expression for bθ is
the same as Eq. (21), while that for br becomes

br,i+ 1
2 jk = 1

ri+ 1
2

(
uθ

i
j

i+ 1
2 jk

)2
. (22)

Clearly, the local energy conservation of Eq. (20) is not satisfied by (Body-A), even for the
equally spaced mesh.

4. A NEW TREATMENT AT THE CYLINDRICAL AXIS

As mentioned in the introduction, an important resulting issue in simulations on cylin-
drical coordinates is the mathematical treatment of the singularity at r = 0. Most of the
singularities appearing in the Navier–Stokes equation (Eq. (2)), are automatically removed
after the spatial discretization using a second-order FDM with a staggered mesh system.
Remaining ones are the radial velocity, ur, 1

2 jk , to be used for

• interpolation in the advection term, hr (Eq. (11)),
• interpolation in the body force term, bθ (Eq. (21)),

and that used for discretization of the diffusion terms.
For this problem, two different approaches have been proposed to date:

1. An artificial velocity is defined as

ur, 1
2 jk = 1

2

(
ur, 3

2 jk − ur, 3
2 j+ Nθ

2 k

)
, (23)

where Nθ is the number of meshes in the θ direction (referred to as (Axis-E)) [11].
2. The singularity is removed by multiplying the ur momentum equation by r (the

flux-based formulation) [13].

With the flux-based formulation, hr and bθ are discretized as

(rhr )i+ 1
2 jk = − 1

ri+ 1
2

[
1
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(rur )

i
i+1 jk(rur )

i
i+1 jk − 1
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(rur )

i
i jk(rur )

i
i jk

]

− 1
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2
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i
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2 j+ 1
2 k

(rur )
j
i+ 1

2 j+ 1
2 k − uθ

i
i+ 1

2 j− 1
2 k

(rur )
j
i+ 1

2 j− 1
2 k

θ

−
uz

i
i+ 1

2 jk+ 1
2

(rur )
k
i+ 1

2 jk+ 1
2
− uz

i
i+ 1

2 jk− 1
2

(rur )
k
i+ 1

2 jk− 1
2

z
, (24)
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and

bθ,i j+ 1
2 k = − 1

r2
i

(rur )
i

j

i j+ 1
2 kuθ,i, j+ 1

2 k . (25)

Since (rur ) 1
2 jk = 0, it does not require any approximation at the point of r = 0. However,

based on this formulation, an energy-conservative scheme such as that in the previous section
cannot be constructed. A modified method, in which the energy-conservative scheme is
used, but with the flux-based formulation only at the first points from the axis, can also
be considered. In that case, it can be found from Eq. (11) that it is equivalent to use the
following artificial velocity (referred to as (Axis-F)):

ur, 1
2 jk = ur, 3

2 jk . (26)

A schematic of the different treatments is shown in Fig. 4.
In the present study, a new method is proposed such that the mathematical constraint at

r = 0,

ur = ux cos θ + uy sin θ,

uθ = −ux sin θ + uy cos θ,
(27)

should be satisfied. Here, ux and uy are velocity components expressed in Cartesian

(a)

(c)

(b)

u r, 3/2 j+N  /2 kθ

u r, 3/2 j k

u r, 1/2 j k u r, 1/2 j k

u r, 3/2 j k

u   ,1 j+1/2 kθ

uy, k

ux, k

FIG. 4. Different treatments at a cylindrical axis. Vectors in black are those defined and actually solved; vectors
in white are artificial ones at r = 0. (a) Method equivalent to flux-based formulation (Axis-F); (b) treatment by
Eggels et al. [11] (Axis-E); (c) first step of the present method (Axis-C).
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coordinates. As shown in Fig. 4c, the procedure to compute ur, 1
2 jk is given as follows:

1. Calculate ux and uy at r = 0 from uθ,1 j+ 1
2 k .

ux,k = − 2

Nθ

Nθ −1∑
j=0

uθ,1 j+ 1
2 k sin θ j ,

uy,k = 2

Nθ

Nθ −1∑
j=0

uθ,1 j+ 1
2 k cos θ j .

(28)

2. Calculate ur, 1
2 jk by using Eq. (27):

ur, 1
2 jk = ux,k cos θ j + uy,k sin θ j . (29)

The accuracy order of the present procedure can easily be assessed. The series expansion
of uθ,1 j+ 1

2 k , around the singular point, r = 0, can be written [15, 18] as

uθ,1 j+ 1
2 k = A(θ)

01

(
r1

2

)
+

[
A(θ)

10 + A(θ)
11

(
r1

2

)2]
cos θ j+ 1

2
+ A(θ)

20

(
r1

2

)
cos 2θ j+ 1

2

+ B(θ)
01

(
r1

2

)
+

[
B(θ)

10 + B(θ)
11

(
r1

2

)2]
sin θ j+ 1

2

+ B(θ)
20

(
r1

2

)
sin 2θ j+ 1

2
+ O

(
r3

1

)
,

(30)

where A(θ)
mn and B(θ)

mn are coefficients for the corresponding modes. It is easily found that
A(θ)

10 and B(θ)
10 are equivalent, respectively, to

A(θ)
10 = uy,k,

B(θ)
10 = −ux,k .

(31)

Summation of Eq. (30) multiplied by cos θ yields

Nθ −1∑
j=0

uθ,1 j+ 1
2 k cos θ j+ 1

2
= Nθ

2

[
uy,k + A(θ)

11

(
r1

2

)2]
. (32)

Similarly,

Nθ −1∑
j=0

uθ,1 j+ 1
2 k sin θ j+ 1

2
= Nθ

2

[
−ux,k + B(θ)

11

(
r1

2

)2]
. (33)

Therefore, the present interpolation procedure, Eq. (28), has second-order accuracy with
respect to r1.

Energy conservation around the cylindrical axis should also be investigated. By carrying
out a derivation similar to that in the previous section, we find that an extra condition,

ur, 3
2 jk +

uθ,1 j+ 1
2 k − uθ,1 j− 1

2 k

θ
= 0, (34)
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should be satisfied in order for the squared value to be conserved. From the series expansion
similar to Eq. (30), one obtains

ur, 3
2 jk +

uθ,1 j+ 1
2 k − uθ,1 j− 1

2 k

θ

= [
A(r)

01 + B(r)
01 + (

A(r)
20 − A(θ)

20

)
cos 2θ j + (

B(r)
20 − B(θ)

20

)
sin 2θ j

]
r1 + O

(
r2

1 , θ2
)
,

(35)

which reveals that the present method has only first-order accuracy concerning the energy
conservation around the cylindrical axis. However, we do not attempt to directly impose
the condition of Eq. (34), because this or an equivalent condition under the continuity,

uz,1 jk+ 1
2
− uz,1 jk− 1

2
= 0, (36)

prohibits any variation of uz along the longitudinal direction and is quite unphysical. The ef-
fects of this first-order error around the axis are shown to be minor in the next section because
the size of volume influenced is considered small if compared to the rest of the domain.

5. NUMERICAL TEST

In order to demonstrate an energy-conservation property of the proposed schemes, numer-
ical tests are conducted assuming an inviscid flow in a straight circular pipe, i.e., Re→ ∞,
with no driving force, i.e., −d P/dz = 0. The reduced set of governing equations read:

• continuity equation:

1

r

∂(rur )

∂r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0; (37)

• momentum equation:

∂ur

∂t
= hr + br − ∂p

∂r
,

∂uθ

∂t
= hθ + bθ − 1

r

∂p

∂θ
,

∂uz

∂t
= hz − ∂p

∂z
.

(38)

Tested different combinations of schemes for the advection term, body force term, and
treatment at the axis are summarized in the following:

• advection term:
(Div.-C) present scheme (Eq. (11)),
(Div.-A) arithmetic average (Eq. (7)),
(Div.-F) flux-based formulation (Eq. (24));

• body force term:
(Body-C) present scheme (Eq. (21)),
(Body-A) arithmetic average (Eq. (22)),
(Body-F) flux-based formulation (Eq. (25));
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FIG. 5. Computational domain.

• treatment at the cylindrical axis:
(Axis-C) present procedure (Eqs. (28)–(29)),
(Axis-E) treatment by Eggels et al. [11] (Eq. (23)),
(Axis-F) method equivalent to flux-based formulation (Eq. (26)).

The computational domain has a radius of R = 1 and a length of 10R as shown in Fig. 5
and the periodic boundary condition is applied at both ends. Equally spaced and unequally
spaced computational meshes are tested. The number and sizes of the computational meshes
used in the main test are tabulated in Table 1. The initial velocity field, with which the time-
advancing integration is started, is generated in the following way:

1. Interpolate velocities from an instantaneous velocity field of fully developed turbu-
lent pipe flow at Reτ = 180 simulated on a 96 × 128 × 256 mesh (see the Appendix) onto
the mesh (eight times coarser in each direction) used for the tests.

2. Solve the Poisson equation in order for the reduced velocity field to satisfy the
continuity equation.

3. Normalize the velocities to have zero mean velocity, i.e., 〈ur 〉 = 〈uθ 〉 = 〈uz〉 = 0,
and unit kinetic energy, i.e., 〈k〉 = 〈 1

2 (ui ui )〉 = 1.

The procedure employed here is similar to that used by Morinishi et al. [8], who used a
random stream function in a two-dimensional problem. Instead of using random vector po-
tential as a seed, DNS data are used to obtain an organized three-dimensional velocity field.

Time integration of the discretized equation is achieved by using the low storage third-
order Runge–Kutta scheme [19]. The same coefficients as those used by Rai and Moin [20]
are used. For the pressure coupling, a delta-form fractional step method, which can be found
in [13, 21], is used. The Poisson equation is solved using trigonometric expansions.

Even if the spatial discretization ideally satisfies the energy conservation, the energy may
change due to the imperfectness of a time integration scheme. Therefore, a preliminary
test is made with different computational time steps of t = 0.01, 0.001, and 0.0001. The

TABLE I

Computational Mesh Used in the Numerical Test

Notation Nr Nθ Nz r θ z χ

Equally spaced 12 16 32 0.083 0.39 0.31 1.00
Unequally spaced 12 16 32 0.021–0.13 0.39 0.31 0.83–1.00

Note. Sizes are nondimensionalized by R. Normalization factor, χ , is defined in Eq. (14).
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FIG. 6. Time trace of the total kinetic energy 〈k〉 computed with various time steps. An energy-conservative
scheme with (Div.-C)–(Body-C)–(Axis-C) (“C-C-C”) and one with a ur (0, θ, z) = 0 boundary condition
(“C-C-0”) were used on an equally spaced mesh.

combination of the proposed schemes, i.e., (Div.-C)–(Body-C)–(Axis-C), was used. As
discussed in the previous section, (Axis-C) has an imperfect (lower order accuracy) energy-
conservation property. Therefore, a case with a boundary condition of ur (0, θ, z) = 0, de-
noted as (Axis-0), was also tested in order to examine the case where the problem of the
axis treatment is absent. The result is given in Fig. 6, where t = 0.001 and 0.0001 give
the indistinguishable results of the kinetic energy, 〈k〉. Due to the dissipative nature of
the Runge–Kutta time integration scheme, 〈k〉 should decrease with time, and the rate of
decrease should be higher for larger t . The result for the reference case, i.e., (Div.-C)–
(Body-C)–(Axis-0), properly shows such a trend. For (Div.-C)–(Body-C)–(Axis-C), how-
ever, the kinetic energy increased due to the imperfect conservation in the treatment of the
axis. The smaller increase of 〈k〉 in the case of t = 0.01 is consistent with the dissipative
nature of the time integration scheme. Throughout the following test, the time step is fixed
at t = 0.001 except for the test on the different amplitude of initial perturbation and grid
resolution where the Courant number is set to be approximately the same as in this condition.

The test is initiated from the case of the equally spaced mesh. Figure 7 shows the time
trace of 〈k〉 in the case of the equally spaced mesh. The kinetic energy should be unchanged
as time advances, because the governing equation does not have any source or dissipative
terms. According to Fig. 7a, the energy is kept almost constant regardless of differences in
the treatment at the cylindrical axis when the present schemes, (Div-.C) and (Body-C), are
used. On the other hand, the increase of 〈k〉 is remarkable in the cases of arithmetic average,
(Div.-A) and (Body-A), and of the flux-based formulation, (Div.-F) and (Body-F). Over
longer integration times, the increase of 〈k〉 is discernible in all cases of combination, as
shown in Fig. 7b. The present combination, (Div.-C)–(Body-C)–(Axis-C), exhibits the least
error in the energy-conservation property and the highest stability. The gradual increase of
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FIG. 7. Time trace of the total kinetic energy 〈k〉 computed using various methods. (a) Initial period until
t = 0.5; (b) for longer period until t = 5. Equally spaced mesh and t = 0.001 are employed. “C-C-E” denotes a
combination of (Div.-C)–(Body-C)–(Axis-E); similar abbreviations apply to other combinations.

〈k〉 even for the best scheme, again, can be attributed to the imperfect energy conservation
around the cylindrical axis as can be noticed from the result of (Div.-C)–(Body-C)–(Axis-0),
also drawn in Fig. 7b as a reference.

As convenient measures of the energy conservation and of the computational stability,
we introduce the time when the error in total kinetic energy grows to 1% (T1%) and to 50%
(T50%), and when the computation diverges, Tdiv. They are tabulated in Table II. Again,
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TABLE II

The Time When the Error in Total Kinetic Energy Grows to 1% (T1%) and 50% (T50%),

and the Time When the Computation Diverges (Tdiv)

Advection term Body force term Treatment at axis T1% T50% Tdiv

(Div.-C) (Body-C) (Axis-C) 2.16 16.08 65.62
(Div.-C) (Body-A) (Axis-C) 0.81 4.97 15.22
(Div.-C) (Body-C) (Axis-E) 1.67 3.50 5.59
(Div.-C) (Body-C) (Axis-F) 1.18 1.93 2.34
(Div.-F) (Body-F) ∗ 0.46 1.25 1.36
(Div.-A) (Body-A) (Axis-C) 0.45 1.02 1.12
(Div.-A) (Body-C) (Axis-C) 0.44 0.82 0.86
(Div.-A) (Body-A) (Axis-E) 0.43 0.71 0.75
(Div.-A) (Body-A) (Axis-F) 0.41 0.55 0.56

Note. Equally spaced mesh and t = 0.001 are employed.

the combination of the present schemes, (Div.-C)–(Body-C)–(Axis-C), is far superior to
other combinations. The energy-conservation property is more sensitive to the scheme
used for the advection and body force terms than to the treatment at the axis. Moreover,
it is noticeable from the comparison between (Div.-C)–(Body-A)–(Axis-C) and (Div.-A)–
(Body-C)–(Axis-C) that the energy conservation of the advection term is more important
than that of the body force term.

Dependency of the energy-conservation property in an initial period, t = 0.25 (corre-
sponding to the center of Fig. 7a), on the amplitude of initial perturbation, 〈k〉init, and the
grid resolution, r , is depicted in Fig. 8. The error, ε, is defined as

ε = 〈k〉t=0.25 − 〈k〉init

〈k〉init
. (39)

It is reconfirmed that the error of the proposed scheme, i.e., (Div.-C)–(Body-C)–(Axis-C),
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FIG. 8. Dependency of the error in kinetic energy in an initial period (t = 0.25), (a) on the amplitude of initial
perturbation and (b) on the grid size.
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TABLE III

The Time When the Error in Total Kinetic Energy Grows to 1% (T1%)

and 50% (T50%), and When the Computation Diverges, Tdiv

Advection term Body force term Treatment at axis T1% T50% Tdiv

(Div.-C) (Body-C) (Axis-C) 2.71 34.16 167.13
(Div.-F) (Body-F) ∗ 0.50 1.47 1.52
(Div.-A) (Body-A) (Axis-C) 0.49 1.44 1.56

Note. Unequally spaced mesh and t = 0.001 are employed.

is much smaller than that of the intuitive scheme, i.e., (Div.-A)–(Body-A)–(Axis-C), for any
〈k〉init andr . The error decreases as 〈k〉init orr becomes smaller. The energy- conservation
property of the present scheme is found to be between first and second order in terms of
r which reflects the order of inconsistency in (Axis-C). It should be noted that the error
in the reference case, (Div.-C)–(Body-C)–(Axis-0), is much smaller, and most of that error
is likely caused by the time integration (ε � −3 × 10−8 for 〈k〉init = 1 and r � 0.083).

Subsequently, a test on the unequally spaced mesh is performed with the default condi-
tions, i.e., 〈k〉init = 1 and the mesh shown in Table I. As summarized in Table III, the results
are similar to those for the equally spaced mesh. The energy-conservation property of the
present scheme for the advection term is quite good despite the approximation of χ = 1
made in the verification process (Eqs. (15)–(17)), and the superiority of the combination of
the present schemes is even clearer. Given the comparison between Tables II and III, one
may wonder why the error computed using the present schemes grows more slowly on the
unequally spaced mesh. Note that these two results cannot be directly compared because
the smoothness of the initial fields is different. Comparison between tests with different
mesh sizes is not straightforward in the case of unequally spaced mesh and is thus omitted.
However, it is apparent from Eqs. (7) and (11) that the difference between the intuitive
scheme and the present scheme becomes smaller as r → 0.

6. CONCLUSIONS

Investigations were made on the energy conservation of second-order-accurate finite
difference schemes for a cylindrical coordinate system. A combination of highly energy-
conservative schemes for advection and centrifugal/Coriolis terms and the treatment of the
singularity at the cylindrical axis was proposed.

Similar to the case of the Cartesian coordinate system, the energy-conservative scheme
for advection terms can be formulated by using relevant interpolation schemes. However,
unlike in the Cartesian coordinate system [9], the resulting form of the energy-conservative
scheme differs from that of an intuitive scheme based on arithmetic average, even when the
mesh is equally spaced.

The proposed schemes are tested numerically via simulations of inviscid flow. The highly
energy-conservative nature and the high stability of the present schemes over other schemes
are demonstrated.

The strict energy conservation discussed in the present paper may not be required for
DNS of a fully developed turbulent flow, as indicated in the Appendix, where a very
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fine mesh is used and large physical dissipation takes place. However, the energy con-
servation will become important in many other situations such as LES using coarse mesh
and DNS of statistically unstationary turbulent flow due, for example, to external control
input.
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FIG. 9. Typical results from DNS of turbulent pipe flow at Reτ = 180. (a) Mean velocity profile; (b) RMS
velocity fluctuations; (c) limiting behavior of Reynolds stresses; (d) turbulent kinetic energy budget. Present results
are compared with DNS data by Eggels et al. [11], Unger and Friedrich (in [11]), and DNS data of channel flow
by Moser et al. [22].
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APPENDIX: DNS OF FULLY DEVELOPED TURBULENT PIPE FLOW

As an initial field in test computations, an instantaneous velocity field of a fully developed
turbulent pipe flow was used. In this Appendix, some results from DNS of turbulent pipe
flow at Reτ = uτ R/ν = 180 are presented to show the accuracy of the present computation.

For the discretization of governing equations (1) and (2), the methods proposed in the
present study, i.e., (Div.-C), (Body-C), and (Axis-C), are used. The diffusion terms are
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spatially discretized using an ordinary second-order accurate finite difference and integrated
in time using a Crank–Nicolson scheme. The length of the computational domain is 10R.
The computational mesh is 96 × 128 × 256 and stretched in the r direction from r+ = 0.46
(wall) to r+ = 2.99 (center). The computational time step is t+ = 0.18.

As representative quantities, profiles of the mean velocity and the RMS velocity fluctua-
tions, the limiting behavior of Reynolds stresses, and the budget of kinetic energy are shown
in Fig. 9. The present results agree well with available DNS data. All the other quantities
which are not shown here are also in good agreement, with slight differences in the vicinity
of the wall, as in Fig. 9c, due to the difference of resolution.

Turbulence statistics, Reynolds stress budgets, two-point correlations, and one-
dimensional energy spectra computed by the present DNS are available in tabulated forms
at the website (http://www.thtlab.t.u-tokyo.ac.jp/).
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1. M. Lesieur and O. Métais, New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech. 28,
45 (1996).

2. U. Piomelli, Large-eddy simulations: Where we stand, in Advances in DNS/LES edited by C. Liu, Z. Liu, and
L. Sakell (Greyden Press, Columbus, 1997), p. 93.

3. N. Kasagi, Progress in direct numerical simulation of turbulent transport and its control, Int. J. Heat Fluid
Flow 19, 125 (1998).

4. P. Moin and K. Mahesh, Direct numerical simulation: A tool in turbulence research, Annu. Rev. Fluid Mech.
30, 539 (1998).

5. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (Soc. for
Industr. & Appl. Math. Philadelphia, 1977).

6. F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid
with free surface, Phys. Fluids 8, 2182 (1965).

7. S. A. Piacsek and G. P. Williams, Conservation properties of convection difference schemes, J. Comput. Phys.
6, 392 (1970).

8. Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, Fully conservative higher order finite difference schemes
for incompressible flow, J. Comput. Phys. 143, 90 (1998), doi:10.1006/jcph.1998.5962.

9. T. Kajishima, Finite-difference method for convective terms using non-uniform grid, Trans. JSME/B 65(633),
103 (1999) (in Japanese).

10. F. E. Ham, F. S. Lien, and A. B. Strong, A fully conservative second-order finite difference scheme for
incompressible flow on nonuniform grids, J. Comput. Phys. 177, 117 (2002), doi:10.1006/jcph.2002.7006.

11. J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich, and F. T. M. Nieuwstadt,
Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment,
J. Fluid Mech. 268, 175 (1994).

12. K. Akselvoll and P. Moin, Large Eddy Simulation of Turbulent Confined Coannular Jets and Turbulent Flow
over a Backward Facing Step, Stanford Univ. Report TF-63 (1995).

13. R. Verzicco and P. Orlandi, A finite-difference scheme for three-dimensional incompressible flows in cylin-
drical coordinates, J. Comput Phys. 123, 402 (1996), doi:10.1006/jcph.1996.0033.

14. P. Orlandi and M. Fatica, Direct simulations of turbulent flow in a pipe rotating about its axis, J. Fluid Mech.
343, 43 (1997).



498 FUKAGATA AND KASAGI

15. G. S. Constantinescu and S. K. Lele, A new method for accurate treatment of flow equations in cylindrical
coordinates using series expansions, in CTR Annual Research Briefs 2000, edited by P. Moin, W. C. Reynolds,
and N. N. Mansour (Center for Turbulence Research, NASA Ames and Stanford Univ. Press, Stanford, CA,
2000), p.199.

16. K. Mohseni and T. Colonius, Numerical treatment of polar coordinate singularities, J. Comput. Phys. 157,
787 (2000), doi:10.1006/jcph.1999.6382.

17. O. Vasilyev, High order finite difference schemes on non-uniform meshes with good conservation properties,
J. Comput. Phys. 157, 746 (2000), doi:10.1006/jcph.1999.6398.

18. J. P. Boyd, Chebyshev and Fourier Spectral Methods (Springer-Verlag, Berlin, 1989), p. 475.

19. P. R. Spalart, R. D. Moser, and M. M. Rogers, Spectral methods for the Navier–Stokes equations with one
infinite and two periodic directions, J. Comput. Phys. 96, 297 (1991).

20. M. M. Rai and P. Moin, Direct numerical simulations of turbulent flow using finite difference schemes,
J. Comput. Phys. 96, 15 (1991).

21. J. K. Dukowicz and A. S. Dvinsky, Approximate factorization as a higher order splitting for the implicit
incompressible flow equations, J. Comput. Phys. 102, 336 (1992).

22. R. D. Moser, J. Kim, and N. N. Mansour, Direct numerical simulation of turbulent channel flow up to Reτ = 590,
Phys. Fluids 11, 943 (1999).


	1. INTRODUCTION
	2. GOVERNING EQUATIONS
	3. RELEVANT SPATIAL DISCRETIZATION AND INTERPOLATION
	FIG. 1.
	FIG. 2.
	FIG. 3.

	4. A NEW TREATMENT AT THE CYLINDRICAL AXIS
	FIG. 4.

	5. NUMERICAL TEST
	FIG. 5.
	TABLE I
	FIG. 6.
	FIG. 7.
	TABLE II
	FIG. 8.
	TABLE III

	6. CONCLUSIONS
	APPENDIX: DNS OF FULLY DEVELOPED TURBULENT PIPE FLOW
	FIG. 9.
	FIG. 9—Continued

	ACKNOWLEDGMENT
	REFERENCES

